Recursive Undecidability and Incompleteness of \mathcal{N}

Prop: If \mathcal{N} is consistent and recursively decidable, then any recursively enumerable subset of \mathbb{N} is recursive.

Proof: Show that if \mathcal{N} is consistent and recursively decidable, it can be used to construct a method that decides membership in any recursively enumerable subset of \mathbb{N}.

Suppose A is a recursively enumerable subset of \mathbb{N}.

Then: There is a recursive function f such that $A = \{ n \in \mathbb{N} : n = f(m), m \in \mathbb{N} \}$.

Thus: Since f is recursive and therefore expressible in \mathcal{N}, there is a $\text{wf } A(x_1, x_2)$ such that

(i) If $f(m) = n$, then $\vdash_{\mathcal{N}} A(0^{(m)}, 0^{(n)})$ or $\vdash_{\mathcal{N}} A(0^{(m)}, 0^{(n)})$, then $f(m) = n$

(ii) If $f(m) \neq n$, then $\vdash_{\mathcal{N}} \sim A(0^{(m)}, 0^{(n)})$ or $\vdash_{\mathcal{N}} \sim A(0^{(m)}, 0^{(n)})$, then $f(m) = n$

Now: If \mathcal{N} is recursively decidable, then for any $\text{wf } A$, there is an effective method that determines if A is or is not a theorem (by Church's Thesis).

So: (i) and (ii) determine, for any $n \in \mathbb{N}$, if n is or is not in the set A. For any n, n is not in A just when a certain wf is not a theorem of \mathcal{N}. And n is in A just when the negation of this wf is not a theorem.

Note: If \mathcal{N} is consistent, then this method will always work: there will be no n that both is and is not in A, since for any $\text{wf } A$, we cannot have both $\vdash_{\mathcal{N}} A$ and $\vdash_{\mathcal{N}} \sim A$.

Corollary: If \mathcal{N} is consistent, then it cannot be recursively decidable.

Proof: Suppose \mathcal{N} is consistent and recursively decidable.

Then: Any recursively enumerable set is recursive (above Prop).

But: K is a recursively enumerable set that is not recursive. (Prop. 7.30.)

Alternative Proof of Recursive Undecidability of \mathcal{N}

Suppose \mathcal{N} is consistent and recursively decidable.

Now: Enumerate all wfs of $\mathcal{L}_\mathcal{N}$ with one free variable: $A_0(x), A_1(x), ...$

Next: Define a 1-place relation D on \mathbb{N} by:

$$D(n) \text{ holds } \iff \neg \vdash_{\mathcal{N}} A_n(0^{(m)})$$

Then: Since \mathcal{N} is assumed to be recursively decidable, there is an effective method that determines if $D(n)$ holds; namely, $D(n)$ holds if and only if the $\text{wf } A_n(0^{(m)})$ is a theorem of \mathcal{N}.

So: By Church's Thesis, D is recursive.

Thus: D is expressible in \mathcal{N}, say by the $\text{wf } A^D(x)$ such that

(i) If $D(n)$ holds, then $\vdash_{\mathcal{N}} A^D(0^{(m)})$

(ii) If $D(n)$ doesn't hold, then $\vdash_{\mathcal{N}} \sim A^D(0^{(m)})$

Now: $A^D(x)$ must appear in the list of wfs with one free variable, say $A^D(x) = A_m(x), n \in \mathbb{N}$.

So: For the case $n = m$, we have:

1. If $D(m)$ holds, then $\vdash_{\mathcal{N}} \sim A_m(0^{(m)})$ (definition of D)
2. If $\vdash_{\mathcal{N}} \sim A_m(0^{(m)})$, then $D(m)$ holds (definition of D)
3. If $D(m)$ holds, then $\vdash_{\mathcal{N}} A_m(0^{(m)})$ (expressibility of D (i))
4. If $D(m)$ doesn't hold, then $\vdash_{\mathcal{N}} \sim A_m(0^{(m)})$ (expressibility of D (ii))

Now: If \mathcal{N} is consistent, then (1) and (3) entail $D(m)$ cannot hold.

But: If $D(m)$ doesn't hold, then (2) entails $\not\vdash_{\mathcal{N}} \sim A_m(0^{(m)})$, whereas (4) entails $\not\vdash_{\mathcal{N}} \sim A_m(0^{(m)})$.

So: If \mathcal{N} is consistent, it cannot be recursively decidable.
Prop. If a first order system S is complete, then it is recursively decidable.

Proof: Suppose S is complete.

Then: If S is inconsistent, it is recursively decidable (the set of S-theorems will be identical to the set of all wfs, which is recursively decidable).

So: Suppose S is consistent.

Then: The following is an effective method to determine if a wf A is a theorem of S:

1. Enumerate the theorems of S.
2. Search list until either A or $\sim A$ is found.
3. If A is found, it is a theorem of S. If $\sim A$ is found, A is not a theorem of S (by completeness).

Thus: By Church's Thesis, the characteristic function for the set of G-numbers of S-theorems is recursive; hence the set of G-numbers of S-theorems is recursive; hence S is recursively decidable.

Comment: Recall that the set of theorems of any (recursively axiomatizable) first order system S is recursively enumerable. And this entails that, for any wf A, if A is an S-theorem, then it will occur somewhere in the list of theorems. But if A is *not* an S-theorem, no effective search of the list will halt. If S is complete, then one can search for either A or $\sim A$; and such a search is guaranteed to halt eventually.