Gödel's 1st Incompleteness Theorem

Let N be a first-order formal theory of arithmetic that is recursively axiomatizable. If N is consistent, then it is negation incomplete.

Questions:
1. What is a "first-order formal theory of arithmetic"?
2. What does it mean to say a first-order formal theory of arithmetic is "consistent" and "negation incomplete"?
3. What does it mean to say a first-order formal theory of arithmetic is "recursively axiomatizable"?
1. First-order Formal Theory

A **formal theory** T consists of:
(a) a *formal language* L_T (alphabet, grammar, semantics),
(b) a set of axioms (a set of wffs of the language),
(c) a *proof system* (a method that allows derivations of more complex wffs from the axioms).

- T is *first-order* if L_T only contains variables for individuals, and not variables for predicates (2nd-order), or variables for predicates of predicates (3rd-order), etc.

- A *formal theory of arithmetic* is a formal theory whose language can express all the claims made about natural numbers in simple arithmetic (addition, subtraction, multiplication, division).

- **Idea**: To formalize arithmetic, we want to demonstrate how all of its true claims ("theorems") can be derived from a set of basic truths (axioms).
2. Consistency and Negation Completeness

- **Theorem**: A theorem of T is a wff of L_T that is provable in T's proof system.
 - **Notation**: $T \vdash \varphi$ means "φ is a theorem of T".

- **Logically Valid**: A logically valid wff of T is a wff of L_T that is true in all interpretations.
 - **Notation**: $T \models \varphi$ means "φ is a logically valid wff of T".

- **Sound**: T is sound just when every theorem of T is logically valid:
 For any wff φ of L_T, if $T \vdash \varphi$, then $T \models \varphi$.

- **Semantically Complete**: T is semantically complete just when every logically valid wff of T is a theorem of T:
 For any wff φ of L_T, if $T \models \varphi$, then $T \vdash \varphi$.

Two more syntactic notions:

- **Consistent**: T is consistent just when, for any wff φ in L_T, it's not the case that both $T \vdash \varphi$ and $T \vdash \neg \varphi$.

- **Negation Complete**: T is negation complete just when, for any wff φ in L_T, either $T \vdash \varphi$ or $T \vdash \neg \varphi$.

Motivations:

Consistency: We don't want our theory of arithmetic to make contradictory claims.
- We don't want to be able to prove that 2 is both even and not even.

Negation Completeness: We want our theory of arithmetic to have something to say about any claim made about natural numbers.
- We want to be able to either prove or refute any such claim.
Example:

- Let L consist of the alphabet $P, Q, R, \land, \lor, \neg, (,)$ and the grammar and semantics of PL.
- Let the proof system be the PL tree rules.

- Consider two theories:
 - T_1, with one axiom: $\{\neg P\}$.
 - T_2, with three axioms: $\{\neg P, Q, \neg R\}$.

- Both T_1 and T_2 are sound and semantically complete (since PL is).
- Both T_1 and T_2 are consistent.

Negation complete?

- T_1: No! There are wffs φ of L such that neither φ nor $\neg \varphi$ is a theorem of T_1.
 - Ex. $(Q \land R)$. Trees for $\neg P \vdash (Q \land R)$ and $\neg P \vdash \neg (Q \land R)$ do not close.
 - Which means: The "given" $\neg P$ doesn't entail either $(Q \land R)$ or $\neg (Q \land R)$.

- T_2: Yes! For any wff φ of L, there is a closed tree for either $\neg P, Q, \neg R \vdash \varphi$, or $\neg P, Q, \neg R \vdash \neg \varphi$.
 - The "given" $\neg P, Q, \neg R$ entail any wff formed from P, Q, R, via PL connectives.

Moral: Semantic completeness is distinct from negation completeness.

- T_1 is not negation complete, but uses a proof system (PL trees) that is semantically complete.
Example:
- Let L consist of the alphabet $P, Q, R, \wedge, \lor, \neg, (,)$ and the grammar and semantics of PL.
- Let the proof system be the PL tree rules.
- Consider two theories:
 - T_1, with one axiom: $\{\neg P\}$.
 - T_2, with three axioms: $\{\neg P, Q, \neg R\}$.
- Both T_1 and T_2 are sound and semantically complete (since PL is).
- Both T_1 and T_2 are consistent.
- T_1 is not negation complete, T_2 is negation complete.

Note: We can "mechanically decide" what is a wff in T_1 and T_2, and hence what wffs are axioms.
- There is a mechanical, step-by-step process in L of building complex wffs from atomic wffs, and atomic wffs from terms.

And: We can also "mechanically decide" what counts as a proof (a closed tree) in T_1 and T_2, and hence, for any wff, whether it is a theorem of T_1 or T_2.

Question: Can we make the notion of "mechanical decision procedure" more precise?
3. Recursively Axiomatizable Formal Theory

A formal theory T is recursively axiomatizable just when its axioms can be encoded as recursive properties of natural numbers.

- **Motivation**: Makes possible a mechanical decision procedure (algorithm) that can decide for any wff of L_T, whether it is an axiom of T.
- **Holy Grail**: To construct a mechanical decision procedure that would decide for any wff of L_T, whether it is a theorem of T.

Is Fermat's Last "Theorem" really a theorem?

For $n \geq 3$, there are no whole numbers x, y, z such that $x^n + y^n = z^n$.

![Pierre de Fermat](image)

Proven by Andrew Wiles in 1993 after 3 centuries of work.

Is the Poincaré Conjecture a theorem?

Every simply connected closed 3-manifold is homomorphic to the 3-sphere. (Or: the 3-sphere is the only type of bounded 3-dim space that contains no holes.)

![Henri Poincaré](image)

Supposedly proven by Grigori Perelman in 2003 after a century and 1 million prize.

Wouldn't it be easier if there were a program that decided which statements were theorems and which weren't?
Link between mechanical ("effective") decidability and recursive properties.

- A recursive property can be encoded in a *primitive recursive* (p.r.) function.
- **And:** P.r. functions are generated by a mechanical algorithm.

Idea: Start with three simple functions as your "starter pack":

(i) Successor function. \(S(x) = \text{successor of } x. \)
(ii) Zero function. \(Z(x) = 0. \)
(iii) \(k \)-place identity function. \(I^k_i(x_1, \ldots, x_k) = x_i \quad 1 \leq i \leq k. \)

Now: Generate more complex functions from starter pack by one of two methods:

(a) **Primitive recursion:** Specify value of function for 0, then specify value for a given argument in terms of its value for smaller arguments.

(b) **Composition:** Generate a new function by composing two already-generated functions.

Examples:

<table>
<thead>
<tr>
<th>Sum function. (+(x, y))</th>
<th>Product function. (\times(x, y))</th>
<th>Factorial function. (!(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+(x, 0) = x = I^1_1(x))</td>
<td>(\times(x, 0) = 0 = Z(x))</td>
<td>(!(0) = 1 = S(0))</td>
</tr>
<tr>
<td>(+(x, S(y)) = S(+(x, y)))</td>
<td>(\times(x, S(y)) = +\big(\times(x, y), x\big))</td>
<td>(!(S(y)) = \times(!(x) , S(x)))</td>
</tr>
</tbody>
</table>

Claim (Church's Thesis):

A (partial) function on the natural numbers is computable by algorithm (mechanically computable) if and only if it is a recursive (partial) function.
So: Gödel's 1st Incompleteness theorem says:
"Any attempt to consistently formalize arithmetic as a first-order theory with
"mechanically" recognizable axioms will be negation incomplete: There will be some
claim about natural numbers that is neither provable nor refutable in the theory."

What's the Big Deal?
• Big Deal if you think there is a formal theory that captures all the claims of
 arithmetic.
4. Aspects of the Proof

Peano Arithmetic: A first-order recursively axiomatizable formal theory of arithmetic; call it N, with language L_N.

The Alphabet of L_N

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>individual constant</td>
</tr>
<tr>
<td>x, y, z, \ldots, v_k</td>
<td>individual variables ($k \geq 0$)</td>
</tr>
<tr>
<td>$=$</td>
<td>2-place predicate (identity)</td>
</tr>
<tr>
<td>S</td>
<td>1-place function (successor)</td>
</tr>
<tr>
<td>$+, \times$</td>
<td>2-place functions (sum, product)</td>
</tr>
<tr>
<td>$\land, \lor, \neg, \supset, \forall, \exists, (,)$</td>
<td>connectives, quantifiers, punctuation</td>
</tr>
</tbody>
</table>

Grammar of L_N: Same as QL^f.

- **Convention**: Write $t_1 + t_2$ and $t_1 \times t_2$, instead of $+(t_1, t_2)$ and $\times(t_1, t_2)$.

Semantics of L_N: Same as QL^f.

- Intended domain of all q-valuations is the set of natural numbers.

- On this domain:

 - The q-value of the constant 0 is the number 0.
 - The q-value of $=$ is the set of all 2-tuples of numbers of the form $\langle m_1, m_2 \rangle$ where $m_1 = m_2$.
 - The q-value of S is the set of 2-tuples of numbers $\{\langle 0,1 \rangle, \langle 1,2 \rangle, \langle 2,3 \rangle, \langle 3,4 \rangle, \ldots \}$.
 - The q-value of $+$ is the set of all 3-tuples of numbers of form $\langle m_1, m_2, m_3 \rangle$ where $m_1 + m_2 = m_3$.
 - The q-value of \times is the set of all 3-tuples of numbers of form $\langle m_1, m_2, m_3 \rangle$ where $m_1 \times m_2 = m_3$.
The axioms of N

(N1) $\forall x (0 \neq Sx)$
(N2) $\forall x \forall y (Sx = Sy \supset x = y)$
(N3) $\forall x (x + 0 = x)$
(N4) $\forall x \forall y (x + y = S(x + y))$
(N5) $\forall x (x \times 0 = 0)$
(N6) $\forall x \forall y (x \times Sy = (x \times y) + x)$
(N7) $\{ \varphi(0) \wedge \forall x (\varphi(x) \supset \varphi(Sx)) \} \supset \forall x \varphi(x)$, for $\varphi(x)$ an open wff with x free.

- (N7) is the Axiom of Mathematical Induction.
 - It says: "For any property of natural numbers φ, if 0 has it, and if, for any number n, if n has it entails that the successor of n has it, then all numbers have it."

- Now: Let's show that N is recursively axiomatizable.
 - Which means: Its axioms can be encoded in recursive functions.

- To do this, we'll first code the wffs and sequences of wffs of L_N as numbers.
Gödel Numbering

- Let the symbols in the alphabet of L_N be encoded by numbers by:

| ∧ | ∨ | ¬ | ⊃ | ∀ | ∃ | (|) | 0 | = | S | + | × | x | y | z | ... |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 2 | 4 | 6 | ... |

- Let expression e in L_N be the sequence of $k+1$ symbols s_0, s_1, \ldots, s_k.

Algorithm to go from an expression e to its Gödel number (g.n.)

1. Take the code number c_i for each s_i.
2. Use c_i as an exponent for the $(i+1)$th prime number π_i.
3. Multiply the results to get $\pi_0^{c_0} \pi_1^{c_1} \pi_2^{c_2} \cdots \pi_k^{c_k}$.

- S has g.n. 2^{21}.
- $SS0$ has g.n. $2^{21}3^{21}5^{17}$.
- $\exists y(SS + y) = SS0$ has g.n. $2^{11}3^{14}5^{13}7^{21}11^{21}13^{23}17^{4}19^{15}23^{19}29^{21}31^{21}37^{17}$!

Algorithm to go from a g.n. to an expression e

(i) Calculate the (unique) prime factorization of the g.n.
(ii) Find the sequence of exponents of the prime factors.
A proof in N can be written as a sequence of wffs, hence encoded in a g.n.

Algorithm to go from a sequence of expressions $e_0, e_1, ..., e_n$ to a g.n.

1. Calculate the g.n. of each e_i.
2. Use g_i as an exponent for the $(i+1)$th prime number π_i.
3. Multiply the results to get $\pi_0^{g_0} \pi_1^{g_1} \pi_2^{g_2} ... \pi_n^{g_n}$.

Algorithm to go from a g.n. to a sequence of expressions

(i) Find the sequence of exponents of the prime factors of the g.n.
(ii) Treat these exponents as g.n.s and take their prime factors.

- A proof in N can be written as a sequence of wffs, hence encoded in a g.n.

Ex: Algorithm for rewriting a tree proof as a linear sequence of wffs.

(i) List trunk wffs first.
(ii) At a fork, take left branch, and continue listing wffs that have not yet appeared in the sequence.
(iii) At the end of a branch, return to the last fork, take the right branch, and continue listing wffs.
(iv) Repeat (ii) and (iii) until all branches have been followed.
• Gödel numbers let us encode syntactic properties of the language L_N in purely numerical properties of (relations between) of natural numbers.

<table>
<thead>
<tr>
<th>Syntactic property</th>
<th>Numerical relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Being a term of L_N.</td>
<td>$\text{Term}(n)$. Holds just when n is the g.n. of a term of L_N.</td>
</tr>
<tr>
<td>Being an atomic wff of L_N.</td>
<td>$\text{Atom}(n)$. Holds just when n is the g.n. of an atomic wff of L_N.</td>
</tr>
<tr>
<td>Being a wff of L_N.</td>
<td>$\text{Wff}(n)$. Holds just when n is the g.n. of a wff of L_N.</td>
</tr>
<tr>
<td>Being a closed wff of L_N.</td>
<td>$\text{Sent}(n)$. Holds just when n is the g.n. of a closed wff of L_N.</td>
</tr>
<tr>
<td>Being an axiom of N.</td>
<td>$\text{Ax}(n)$. Holds just when n is the g.n. of an axiom of N.</td>
</tr>
<tr>
<td>Being a proof in N.</td>
<td>$\text{Prf}(m, n)$. Holds just when m is the g.n. of a proof in N of the closed wff with g.n. n.</td>
</tr>
</tbody>
</table>

Claim 1: All of the numerical relations in Table 1 are primitive recursive.

What this means:
• To say $\text{Term}(n)$ is primitive recursive is to say that there is a p.r. function that computes $\text{Term}(n)$; i.e., that tells us, for a given n, if $\text{Term}(n)$ holds.
• **Idea:** To show this, we have to find p.r. functions that encode the algorithm that goes from a g.n. to an expression of L_N, and we have to find p.r. functions that encode the algorithm that determines what a term is in L_N.
• **Note:** That $\text{Ax}(n)$ is primitive recursive demonstrates that N is recursively axiomatizable.
Expressibility in N

- Let \bar{n} be shorthand for the term $\text{SSS}...\text{S}0$ in L_N, where S occurs n-times.

A k-place numerical relation P is **expressible** in N just when there is a wff $\varphi(v_1, \ldots, v_k)$ of L_N with free occurances of v_1, \ldots, v_k, such that for any natural numbers n_1, \ldots, n_k,

if n_1, \ldots, n_k stand in relation P to each other, then $N \vdash \varphi(\bar{n}_1, \ldots, \bar{n}_k)$,

if n_1, \ldots, n_k do not stand in relation P to each other, then $N \vdash \neg \varphi(\bar{n}_1, \ldots, \bar{n}_k)$.

Ex. The 1-place numerical relation $ev(n)$ of being even is expressible in N.

- The wff of L_N that expresses this is $\exists y (2 \times y = x)$, where x occurs free.
- **Which means:** For any natural number n,

 if n is even, then $N \vdash \exists y (2 \times v = \bar{n})$,

 if n is not even, then $N \vdash \neg \exists y (2 \times v = \bar{n})$.

- So: To say $\text{Prf}(m, n)$ is expressible in N is to say that there is a wff of L_N, call it $\mathcal{PF}(x, y)$ which says "x is the g.n. of a proof in N of the wff with g.n. y", such that, for any numbers m, n:

 if $\text{Prf}(m, n)$ holds, then $N \vdash \mathcal{PF}(\bar{m}, \bar{n})$,

 if $\text{Prf}(m, n)$ does not hold, then $N \vdash \neg \mathcal{PF}(\bar{m}, \bar{n})$.

Claim 2: A numerical relation is primitive recursive if and only if it is expressible in N.
The Gödel Sentence of N

Def. The 2-place numerical relation $W(m, n)$ holds just when m is the g.n. of a proof in N of the wff $\varphi(\bar{n})$, obtained from the wff $\varphi(y)$ (in which y occurs free) whose g.n. is n.

- **Claim:** $W(m, n)$ is primitive recursive.
 - **So:** There's a wff $\mathcal{W}(x, y)$ that expresses $W(m, n)$ in N.

Def: The **Gödel sentence** \mathcal{G} is the wff $\forall x \neg \mathcal{W}(x, \bar{p})$, where p is the g.n. of the wff $\mathcal{U}(y) =_{\text{def}} \forall x \neg W(x, y)$, in which y occurs free.

\mathcal{G} says: "There is no number m such that m is the g.n. of a proof in N of $\mathcal{U}(\bar{p})$.

But: $\mathcal{U}(\bar{p})$ is just $\mathcal{G}!$

So: \mathcal{G} says: "There is no proof in N of \mathcal{G}.

Claim 1: \mathcal{G} is true if and only if it is unprovable in N.

- If \mathcal{G} is true, then "There is no proof of \mathcal{G} in N" is true; hence \mathcal{G} is unprovable in N.
- If \mathcal{G} is unprovable, then there is no m such that m is the g.n. of a proof in N of \mathcal{G}; so \mathcal{G} is true.
Claim 2: If N is sound, then N is not negation complete.

- **Idea:** We will show that \mathcal{G} is a wff of L_N such that neither $N \vdash \mathcal{G}$ nor $N \vdash \neg \mathcal{G}$.

Suppose: N is sound.

- **Then:** For any wff φ, if $N \not\models \varphi$, then $N \not\models \varphi$.
 "If φ is false, then φ is not provable."
- **Now:** Suppose $N \vdash \mathcal{G}$.
- **Then:** $N \not\models \mathcal{G}$.
 Suppose \mathcal{G} could be proved in N. Since \mathcal{G} is provable if and only if it is false (Claim 1.)
- **So:** $N \not\models \mathcal{G}$.
- **Thus:** $N \not\models \mathcal{G}$.
 From soundness of N.
- **So:** $N \not\models \neg \mathcal{G}$.
 Or $\neg \mathcal{G}$ is false.
- **So:** $N \not\models \neg \mathcal{G}$.
 *From soundness of N.

- **Thus:** \mathcal{G} is a wff of L_N such that neither $N \vdash \mathcal{G}$ nor $N \vdash \neg \mathcal{G}$.

Thus: N is not negation complete.

- **Note:** This is a "semantic" proof of N's negation incompleteness (it relies on the notion of soundness).

- What about a purely "syntactic" proof of N's negation incompleteness?
Claim 3: If N is consistent, then there is a wff φ of L_N such that $N \nvdash \varphi$; and if N is ω-consistent, then $N \nvdash \neg \varphi$.

- **First**: Show that if N is consistent, then $N \nvdash G$.

 Suppose: G is provable in N.
 Or $N \vdash \forall x \neg W(x, \bar{p})$.

 - **Then**: There is a natural number m such that m is the g.n. of a proof in N of G.

 - **So**: The 2-place numerical relation $W(m, p)$ holds, where p is the g.n. of the wff $U(y)$.

 - **So**: $N \vdash W(\overline{m}, \bar{p})$.

 - **Now**: G entails $\neg W(\overline{m}, \bar{p})$.

 - **So**: Since $N \vdash G$, we have $N \vdash \neg W(\overline{m}, \bar{p})$.

 Thus: N is inconsistent. (There is a wff $W(\overline{m}, \bar{p})$ such that both it and its negation are theorems of N.)
Claim 3: If N is consistent, then there is a wff φ of L_N such that $N \not\vdash \varphi$; and if N is ω-consistent, then $N \not\vdash \neg \varphi$.

Def: A theory T with L_N as its language is **ω-inconsistent** just when, for some open wff $\varphi(x)$, T can prove each $\varphi(\bar{m})$ and T can also prove $\neg \forall x \varphi(x)$ (i.e., $\exists x \neg \varphi(x)$).

- **Or**: T can prove φ for each natural number, and it can also prove $\neg \varphi$ for some natural number.
- **Now**: Show that if N is ω-consistent, then $N \not\vdash \neg G$.

Suppose: N is ω-consistent and $\neg G$ is provable in N.
- **Then**: $N \vdash \neg \forall x \neg W(x, \bar{p})$. Or: $N \vdash \exists x \neg \neg W(x, \bar{p})$. (*)
- **Now**: If N is ω-consistent, then it is consistent.
- **So**: G is not provable.
- **So**: For any number m, m is not the g.n. of a proof in N of G.
- **So**: The 2-place numerical relation $W(m, p)$ does not hold, where p is the g.n. of the wff $U(y)$.
- **Which means**: $N \vdash \neg W(\bar{m}, \bar{p})$. (Since $W(m, n)$ is expressible in N.) (**)
- **Note**: (*) and (**) entail N is ω-inconsistent.
- **Thus**: $\neg G$ must be unprovable in N.

But: Claim 3 still doesn't quite say, "If N is consistent, then N is negation complete."
• Can show the following:

I. If N is consistent, recursively axiomatizable, and negation complete, then it is recursively decidable.

II. If N is consistent and recursively axiomatizable, then it is not recursively decidable.

So: If N is consistent and recursively axiomatizable, then it is not negation complete.

Proof of (I). Show how to construct a mechanical procedure that decides, for any wff φ of L_N, whether φ is a theorem of N.

Suppose: N is consistent, recursively axiomatizable, and negation complete.
- Let φ be an arbitrary wff of L_N.
- Generate a list of N's theorems. \textit{Since N is recursively axiomatizable.}
- Either φ or $\neg \varphi$ must appear. \textit{Because N is negation complete.}
- If φ appears, then φ is a theorem. \textit{Because N is consistent.}
- If $\neg \varphi$ appears, then φ is not a theorem.

How to mechanically generate a list of N's theorems
- For each number n, check all numbers m to see if $\text{Prf}(m, n)$ holds.
- If it does hold, add the wff whose g.n. is n to the list.

Note: This is different from having a mechanical procedure that determines, for any φ, whether it will ever turn up in the list!
Proof of (II) If N is consistent and recursively axiomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.

- **Now:** Show that N is not consistent.

1. List all the 1-place recursive properties of numbers $P_0(n)$, $P_1(n)$, ... as recursive sets of numbers:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

 Each row represents the extension of the property labeled by that row:
 - Extension of P_0 is $\{1, \ldots\}$
 - Extension of $P_1 = \{0, 1, 2, \ldots\}$
 - Extension of $P_2 = \{1, 2, \ldots\}$

2. Define a 1-place property $D(n)$ by: $D(n)$ holds if and only if $P_n(n)$ does not hold.
 - Or: $D(n)$ holds if and only if $\neg P_n(\bar{n})$ is a theorem in N, where $P_n(x)$ expresses $P_n(n)$ in N.

3. **Claim:** $D(n)$ is a recursive property, so it must be in the list, say $D(n) = P_m(n)$.

 Proof: The following is a mechanical procedure that decides if a number n has the property D:
 - (i) For any number n, check if $\neg P_n(\bar{n})$ is a theorem of N (possible since N is recursively decidable).
 - (ii) If so, then $D(n)$ holds.
 - (iii) If not, then $D(n)$ doesn't hold.
Proof of (II) If N is consistent and recursively axiomatizable, then it is not recursively decidable.

Suppose: N is recursively decidable. Then N is recursively axiomatizable.

- **Now:** Show that N is not consistent.

1. List all the 1-place recursive properties of numbers $P_0(n)$, $P_1(n)$, ... as recursive sets of numbers:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Each row represents the extension of the property labeled by that row:
 - Extension of P_0 is $\{1, \ldots\}$
 - Extension of P_1 is $\{0, 1, 2, \ldots\}$
 - Extension of P_2 is $\{1, 2, \ldots\}$

2. Define a 1-place property $D(n)$ by: $D(n)$ holds if and only if $P_n(n)$ does not hold.
 - Or: $D(n)$ holds if and only if $\neg P_n(n)$ is a theorem in N, where $P_n(x)$ expresses $P_n(n)$ in N.

3. **Claim:** $D(n)$ is a recursive property, so it must be in the list, say $D(n) = P_m(n)$.

4. **Question:** Does $D(m)$ hold? (Does the number m have the property D that it labels?)
 - (a) $D(m)$ holds if and only if $\neg P_m(m)$ is a theorem in N.
 - (b) If $D(m)$ holds, then $P_m(m)$ is a theorem in N.
 - (c) If $D(m)$ doesn't hold, then $\neg P_m(m)$ is a theorem in N.

 - **Now:** (a) and (c) entail that $\neg P_m(m)$ is a theorem in N.
 - **So** (a) entails that $D(m)$ holds.
 - **But:** (b) then entails that $P_m(m)$ is a theorem in N.

 Thus: There's a wff $P_m(m)$ of L_N such that both it and its negation are theorems in N.