Intertheoretic Implications of Non-Relativistic Quantum Field Theories

Jonathan Bain

Dept. of Humanities and Social Sciences
Polytechnic Institute of NYU
Brooklyn, New York

1. NQFTs and Particles
2. Newtonian Quantum Gravity
3. Intertheoretic Relations
1. NQFTs and Particles

- **Relativistic quantum field theory (RQFT) =** A QFT invariant under the symmetries of a Lorentzian spacetime.

- **Non-relativistic quantum field theory (NQFT) =** A QFT invariant under the symmetries of a classical spacetime.
1. NQFTs and Particles

Arena for RQFTs: Lorentzian spacetime \((M, g_{ab})\).

- \(g_{ab}\) - pseudo-Riemannian metric with Lorentzian signature \((1, 3)\).
- \(\nabla_a g_{bc} = 0\) for unique \(\nabla_a\) (compatibility)

Ex. 1: Minkowski spacetime (spatiotemporally flat): \(R^a_{\ bcd} = 0\).

- No unique way to separate time from space:

 - Symmetry group generated by \(\xi_x g_{ab} = 0\). (Poincaré group)
1. NQFTs and Particles

Arena for RQFTs: Lorentzian spacetime \((M, g_{ab})\).

- \(g_{ab}\) - pseudo-Riemannian metric with Lorentzian signature \((1, 3)\).
- \(\nabla_a g_{bc} = 0\) for unique \(\nabla_a\) (compatibility)

Ex. 1: Minkowski spacetime (spatiotemporally flat): \(R^{a}_{bcd} = 0\).

Ex. 2: Vacuum Einstein spacetime (Ricci flat): \(R_{ab} = 0\).

Comparison:

- *Different* metrical structure, *different* curvature, same metric signature \((i.e., "in the small", isomorphic to Minkowski spacetime).
- Different types of RQFTs, in flat (Minkowski) and curved Lorentzian spacetimes.
1. NQFTs and Particles

Arena for NQFTs: Classical spacetime \((M, h^{ab}, t_{ab}, \nabla_a)\).

- \(h^{ab}, t_{ab}\) - degenerate metrics with signatures \((0, 1, 1, 1)\) and \((1, 0, 0, 0)\).
- \(h^{ab}t_{ab} = 0\) (*orthogonality*)
- \(\nabla_c h^{ab} = 0 = \nabla_c t_{ab}\) (*compatibility*) \(\Rightarrow\) fails to uniquely determine \(\nabla_a\)

- Unique way exists to separate time from space:

\[\begin{align*}
\text{Any } O \text{ and } O' \text{ agree on:} \\
\bullet \text{ Time interval between any two events.} \\
\bullet \text{ Spatial interval between any two simultaneous events.}
\end{align*}\]

- Symmetry group generated by \(\mathcal{L}_x h^{ab} = \mathcal{L}_x t_{ab} = 0.\)
1. NQFTs and Particles

Arena for NQFTs: Classical spacetime \((M, h^{ab}, t_{ab}, \nabla_a)\).

- \(h^{ab}, t_{ab}\) - degenerate metrics with signatures \((0, 1, 1, 1)\) and \((1, 0, 0, 0)\).
- \(h^{ab}t_{ab} = 0\) (orthogonality)
- \(\nabla_c h^{ab} = 0 = \nabla_c t_{ab}\) (compatibility) \(\Rightarrow\) fails to uniquely determine \(\nabla_a\)

Ex. 1: Neo-Newtonian spacetime (**spatiotemporally flat**): \(R^a_{bcd} = 0\).
 - Symmetry group generated by \(\mathcal{L}_x h^{ab} = \mathcal{L}_x t_{ab} = \mathcal{L}_x \Gamma^a_{bc} = 0\). (*Galilei group*)

Ex. 2: Maxwellian spacetime (**rotationally flat**): \(R^{ab}_{cd} = 0\).
 - Symmetry group generated by \(\mathcal{L}_x h^{ab} = \mathcal{L}_x t_{ab} = \mathcal{L}_x \Gamma^{ab}_{c} = 0\). (*Maxwell group*)

Comparison:

- *Same* metrical structure, *different* curvature.
- Different types of NQFTs, in flat (Neo-Newtonian) and curved classical spacetimes.
1. NQFTs and Particles

Received View on Particles:

(A) The QFT must admit a Fock space formulation in which *local number operators* appear that can be interpreted as acting on a state of the system associated with a bounded region of spacetime and returning the number of particles in that region.

(B) The QFT must admit a *unique* Fock space formulation in which a *total number operator* appears that can be interpreted as acting on a state of the system and returning the total number of particles in that state.

Necessary conditions for a particle interpretation:

(Arageorgis, Earman, Ruetsche 2003; Halvorson 2007; Halvorson and Clifton 2002; Fraser 2008)
1. NQFTs and Particles

Claim 1: Conditions (A) and (B) fail in RQFTs.

Against (B) in RQFTs:

- **Problem of Privilege**: RQFTs admit unitarily inequivalent Fock space representations of their CCRs.
- Minkowski spacetime exemption? Kay (1979): Minkowski quantization is unique up to unitary equivalence.
- **But**: The Unruh Effect (in one guise) says: "No!" (at least to some authors).
- **In any event**: Haag's Theorem says "No!" for realistic (interacting) RQFTs.

Haag's Theorem ⇒

- Representations of the CCRs for both a non-interacting and an interacting RQFT cannot be constructed so that they are unitarily equivalent at a given time.

- Free particle total number operators cannot be used in interacting RQFTs.
- No consistent method for constructing "interacting" total number operators.
1. NQFTs and Particles

Claim 1: Conditions (A) and (B) fail in RQFTs.

Against (A) in RQFTs:

- **Separability Corollary (Streater & Wightman 2000):** Let \mathcal{A} be a local algebra of operators associated with a bounded region \mathcal{O} of spacetime. If

 (i) the vacuum state is cyclic for \mathcal{A} ("local cyclicity");
 (ii) \mathcal{O} has non-trivial causal complement;
 (iii) relativistic local commutativity holds;

 then the vacuum state is *separating* for \mathcal{A}. For any $A \in \mathcal{A}$, if $A\Omega = 0$, then $A = 0$.

- Reeh-Schlieder theorem secures (i) for Minkowski spacetime.

- Structure of Minkowski spacetime secures (ii).

- RQFTs satisfy (iii).

Thus: Annihilation operators, hence number operators, cannot be defined in \mathcal{A} for RQFTs in Minkowski spacetime.
1. NQFTs and Particles

To what extent does the Separability Corollary hold for RQFTs in Lorentzian spacetimes in general?

 As soon as a classical field satisfies a certain hyperbolic partial differential equation, a state over the field algebra of the quantized theory, which is a ground- or KMS-state with respect to the group of time translations, has the Reeh-Schlieder property \([i.e., \text{local cyclicity}]. \) (Strohmeier 2000, pg. 106.)

- Is local cyclicity a generic feature of globally hyperbolic Lorentzian spacetimes?

- If so, then local cyclicity is not a generic feature of RQFTs in Lorentzian spacetimes:
 - Global hyperbolicity is not a necessary condition for the existence of an RQFT in a Lorentzian spacetime. (Fewster and Higuchi 1996.)
1. NQFTs and Particles

To what extent does the Separability Corollary hold for RQFTs in Lorentzian spacetimes in general?

 As soon as a classical field satisfies a certain hyperbolic partial differential equation, a state over the field algebra of the quantized theory, which is a ground- or KMS-state with respect to the group of time translations, has the Reeh-Schlieder property [*i.e.*, local cyclicity]. (Strohmeier 2000, pg. 106.)

- Is local cyclicity a generic feature of states analytic in the energy?

- Perhaps for RQFTs in Lorentzian spacetimes, but not for NQFTs in classical spacetimes:
 - Vacuum states for NQFTs are analytic but not locally cyclic for local algebras defined on spatial regions.
1. NQFTs and Particles

Claim 2: Conditions (A) and (B) hold in NQFTs due to the absolute temporal metric of classical spacetimes.

Condition (A) in NQFTs:

- Non-relativistic local commutivity \(\Rightarrow\) distinction between spatiotemporal local algebras and spatial local algebras.

- For spatiotemporal local algebra:
 - Requardt (1982) \(\Rightarrow\) Vacuum is locally cyclic.
 - But: Absolute temporal structure \(\Rightarrow\) Causal complement of \(\mathcal{O}\) is trivial.
 - Hence: Vacuum is not separating.

- For spatial local algebras:
 - No local cyclicity result.
 - Hence: Vacuum is not separating.
1. NQFTs and Particles

Why does local cyclicity fail for local algebras associated with spatial regions of a classical spacetime?

- Let $\phi(t, x)$ be a positive-frequency solution to a well-posed PDE.
 - $\phi(t, x)$ is a boundary value of a holomorphic function.
- Let S be an open spatial region of spacetime.
 - If $\phi(t, x)$ vanishes on S, then it vanishes in $D(S)$.

- **Case 1:** Hyperbolic PDE in Lorentzian spacetime.
 - $D(S)$ has non-zero temporal extent.
 - If ϕ vanishes on S, then it vanishes in an open set in time, and thus everywhere (Edge of the Wedge theorem).
 - *Thus:* If $\phi \neq 0$, then it cannot vanish on S. *Anti-locality for spatial regions.*

- **Case 2:** Parabolic PDE in classical spacetime.
 - $D(S)$ has zero temporal extent.
 - If ϕ vanishes on S, then it need not vanish in an open set in time.
 - *Thus:* If $\phi \neq 0$, then it can vanish on S. *Anti-locality fails for spatial regions.*
1. NQFTs and Particles

Claim 2: Conditions (A) and (B) hold in NQFTs due to the absolute temporal metric of classical spacetimes.

Condition (B) in NQFTs:

- **No Problem of Privilege**: The absolute temporal metric guarantees a unique global time function on the spacetime, and this guarantees a unique means to construct a one-particle structure over the classical phase space (barring topological mutants).
1. NQFTs and Particles

General Moral:

To the extent that Conditions (A) and (B) require the existence of an absolute temporal metric, they are informed by a non-relativistic concept of time, and thus are inappropriate in informing interpretations of RQFTs.
2. **Newtonian Quantum Gravity**

I. Theories of Newtonian Gravity (NG) with a grav. potential field Φ.

$(M, h^{ab}, t_{ab}, \nabla a, \Phi, \rho)$

$$h^{ab}t_{ab} = 0 = \nabla c h^{ab} = \nabla c t_{ab}$$

Orthogonality/compatibility

$$h^{ab}\nabla a \nabla b \Phi = 4\pi G \rho$$

Poisson equation

$$\xi^a \nabla a \xi^b = -h_{ab} \nabla a \Phi$$

Equation of motion

Ex. 1: Neo-Newtonian NG

$$R^a_{bcd} = 0$$

Ex. 2: "Island Universe" Neo-Newtonian NG

$$R^a_{bcd} = 0, \quad \Phi \rightarrow 0 \text{ as } x^i \rightarrow \infty$$

Ex. 3: Maxwellian NG

$$R^{ab}_{\ cd} = 0$$
2. Newtonian Quantum Gravity

II. Theories of Newton-Cartan Gravity (NCG) that subsume Φ into connection. $(M, h^{ab}, t_{ab}, \nabla_a, \rho)$

\[h^{ab} t_{ab} = 0 = \nabla_c h^{ab} = \nabla_a t_{ab} \quad \text{Orthogonality/compatibility} \]

\[R_{ab} = 4\pi G \rho t_{ab} \quad \text{Generalized Poisson equation} \]

\[\xi^a \nabla_a \xi^b = 0 \quad \text{Equation of motion} \]

Ex. 1: Weak NCG (1/c → 0 limit of GR)

\[R_{[a}^{\ [b} c_{d]} = 0 \]

Ex. 2: Asymptotically spatially flat weak NCG (recovers Poisson equ.)

\[R_{[a}^{\ [b} c_{d]} = 0, \quad R^{abcd} = 0 \text{ at spatial infinity} \]

Ex. 3: Strong NCG (recovers Poisson equ.)

\[R_{[a}^{\ [b} c_{d]} = 0, \quad R^{ab}_{\ ;cd} = 0 \]
2. Newtonian Quantum Gravity

Strong NCG

- Christian (1997): constrained Hamiltonian system, reduced phase space.
- Unique one-parameter family of time evolution maps ⇒ Unique Fock space quantization

Newtonian Quantum Gravity (NQG)

- Interacting (extended) Maxwell-invariant QFT of gravity in curved classical spacetime ("strong Newton-Cartan" spacetime).
- Satisfies Conditions (A) and (B).
- Gravitational degrees of freedom are *dynamic*: Compare with RQFTs in curved Lorentzian spacetimes.
- Gravitational degrees of freedom are *quantized*: Compare with semi-classical quantum gravity.
3. Intertheoretic Relations

\[\frac{1}{c} \rightarrow 0 \text{ limit} \]

- Contraction of Poincaré Group? (Bacry & Levy-Leblond 1968)
- SR → CM, RQFT → GQM: Depends on dynamics. (Brown & Holland 2003)
- GR → NCG: No.
3. Intertheoretic Relations

$G \to 0$ limit: Ricci vs Riemann flatness

- GR \to SR: Vacuum Einstein spacetime vs Minkowski spacetime
- NCG \to CM, NQG \to GQM: Ricc-flat classical spacetime vs Neo-Newtonian spacetime

Christian (1997)
\(\hbar \to 0 \) limit: \textit{Problem of Privilege}

- RQFT \(\to \) SR: No unique (up to unitary equivalence) representation of CCRs.
- GQM \(\to \) CM, NQG \(\to \) NCG: No problem (barring topological mutants).

Christian (1997)
3. Intertheoretic Relations

Structural Problem

- What is the referant of "GQM"? Where do NQFTs fit in?

Proposal: Add another axis for $N = degrees of freedom$

- Let "NQM" refer to non-relativistic finite-dimensional quantum theories of particle dynamics.
- Consider NQMs to be the $N \to 0$ limit of NQFTs.

Christian (1997)
3. Intertheoretic Relations

- Particle vs field theories (N axis).
- Relativistic vs non-relativistic theories ($1/c$ axis).
- Gravitational vs non-gravitational theories (G axis).
- Classical vs quantum theories (\hbar axis).
3. Intertheoretic Relations

Turning off G in field theories:

- Non-relativistic classical field theory of gravity \rightarrow NCFT
- Asymptotically spatially flat NCG = "Island Universe" Neo-Newtonian NG
- $G \rightarrow 0$: Galilei-invariant classical field theory in Neo-Newtonian spacetime
Turning off G in field theories:

- Relativistic classical field theory of gravity \rightarrow RCFT
- GR
- $G \rightarrow 0$: Relativistic classical field theory in Ricci-flat Lorentzian spacetime
3. Intertheoretic Relations

Turning off G in field theories:
- Non-relativistic quantum field theory of gravity \rightarrow NQFT
- NQG
- $G \rightarrow 0$: NQFT in Ricci-flat classical spacetime
3. Intertheoretic Relations

Turning on quantum gravity:
- Quantizing GR.
3. Intertheoretic Relations

Turning on quantum gravity:
- Quantizing GR.
- Turning on gravity in an RQFT.
3. Intertheoretic Relations

Turning on quantum gravity:

- Quantizing GR.
- Turning on gravity in an RQFT.
- Relativizing NQG.
3. Intertheoretic Relations

Turning on quantum gravity:
- Quantizing GR.
- Turning on gravity in an RQFT.
- Relativizing NQG.
- Taking the "thermodynamic limit" of an RQMG.