14: Generalized Elements in S°

Structure-preserving maps from a cycle to another endomap

Let X^α and Y^β be the S°-objects (i.e., dynamical systems):

Find an S°-map $X^\alpha \longrightarrow Y^\beta$ such that $f(0) = y$.

To specify f, we need to say what it does to each element x of X^α:

$x = 0$: \hspace{2cm} \begin{align*}
\alpha(0) &= \beta(f(0)), \text{ or } f(1) = \beta(y) = z \\
\alpha(1) &= \beta(f(1)), \text{ or } f(2) = \beta(z) = y \\
\alpha(2) &= \beta(f(2)), \text{ or } f(3) = \beta(y) = z \\
\alpha(3) &= \beta(f(3)), \text{ or } f(0) = \beta(z) = y
\end{align*}

How many other maps are there? (Only other one takes 0 to z.)

Definition: An element x of an S°-object X^α has period n just when $\alpha^n(x) = x$.

Definition: For any natural number n, the cycle of length n, C_n, is the set of n elements \{0, 1, 2, ..., n\} with the "successor" endomap, with the successor of $n - 1$ being 0.
Note: \(S^{\circ} \)-maps \(C_4 \xrightarrow{f} Y^{\circ^3} \) correspond to all elements of \(Y^{\circ^3} \) with period 4!

\[
Y^{\circ^3} = \begin{array}{c}
\text{Two elements with period 4} \\
y: \beta^4(y) = y \\
z: \beta^4(z) = z
\end{array}
\]

\[
\text{Two maps } C_4 \xrightarrow{f} Y^{\circ^3}: \\
f_1(0) = y, f_1(1) = z, f_1(2) = y, f_1(3) = z \\
f_2(0) = z, f_2(1) = y, f_2(2) = z, f_2(3) = y
\]

In general: For any arbitrary \(S^{\circ} \)-object \(Y^{\circ^3} \), the \(S^{\circ} \)-maps \(C_n \xrightarrow{f} Y^{\circ^3} \) correspond to all elements of \(Y^{\circ^3} \) with period \(n \).

Terminology: The \(S^{\circ} \)-maps \(C_n \xrightarrow{f} Y^{\circ^3} \) name the elements of \(Y^{\circ^3} \) with period \(n \).

Question: How can we name arbitrary or "generalized" elements of an \(S^{\circ} \)-object?

example 1:

\[
Y^{\circ^3} = \begin{array}{c}
y \rightarrow \beta^4(z) = z; \text{ so } z \text{ has period 4} \\
x \text{ has no period; but } x \text{ has the "positive property" of "being two steps away from a 4-cycle"}
\end{array}
\]

example 2:

\[
N^{\circ^\sigma} = \begin{array}{c}
\text{set of natural numbers } \{0, 1, 2, 3, \ldots\} \\
\sigma(n) = n + 1
\end{array}
\]

0 has no positive properties
Claim: \(S^{\sigma}\)-maps from \(N^{\sigma} \) to any \(S^{\sigma}\)-object \(Y^{\sigma} \) name all the elements of \(Y^{\sigma} \).

In particular: For each element \(y \) of \(Y^{\sigma} \), there is a unique map \(N^{\sigma} \xrightarrow{f} Y^{\sigma} \) such that \(f(0) = y \).

Proof. Let \(N^{\sigma} \xrightarrow{f} Y^{\sigma} \) be an \(S^{\sigma}\)-map such that \(f(0) = y \) for element \(y \) of \(Y^{\sigma} \).

Now: Show that any other \(S^{\sigma}\)-map \(N^{\sigma} \xrightarrow{g} Y^{\sigma} \) is such that, if \(g(0) = f(0) \), then \(g = f \).

Given:

<table>
<thead>
<tr>
<th>Given</th>
<th>(f \circ \sigma = \beta \circ f)</th>
<th>(g \circ \sigma = \beta \circ g)</th>
<th>(g(0) = f(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(N \xrightarrow{f} Y)</td>
<td>(N \xrightarrow{g} Y)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>(\sigma \downarrow \beta)</td>
<td>(\sigma \downarrow \beta)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(f(0))</td>
<td>(g(0))</td>
<td></td>
</tr>
</tbody>
</table>

Then:

\[
\begin{align*}
\text{Then:} & \quad f(1) = f(\sigma(0)) \quad \text{given (definition of } \sigma) \\
& = \beta(f(0)) \quad \text{given (1)} \\
& = \beta(g(0)) \quad \text{given (3)} \\
& = g(\sigma(0)) \quad \text{given (2)} \\
& = g(1) \quad \text{given (definition of } \sigma) \\
\end{align*}
\]

So: If \(f \) and \(g \) agree on \(0 \), then they agree on \(1 \).

Now: Suppose for any \(n \), \(g(n) = f(n) \). Call this assumption \((3') \).

Does this then entail \(f(n + 1) = g(n + 1) \)?

Check:

\[
\begin{align*}
\text{Check:} & \quad f(n + 1) = f(\sigma(n)) \quad \text{given (definition of } \sigma) \\
& = \beta(f(n)) \quad \text{given (1)} \\
& = \beta(g(n)) \quad \text{given (3')} \\
& = g(\sigma(n)) \quad \text{given (2)} \\
& = g(n + 1) \quad \text{given (definition of } \sigma) \\
\end{align*}
\]

So: We’ve shown that if \(f(0) = g(0) \), then \(f(1) = g(1) \). And if \(f(n) = g(n) \) for any \(n \), then \(f(n + 1) = g(n + 1) \). This means, if \(f \) and \(g \) agree on \(0 \), then they agree on \(1 \), and hence \(2 \), and hence \(3 \), etc. So they agree on all elements of \(N \).

So: \(f = g \)!